

jcat53 : JCAT53 - 53èmes Journées de Calorimétrie et d'Analyse Thermique

22-24 mai 2023 PALAISEAU (France)

Analyse thermique en présence de transferts couplés chaleur-masse : synergie entre expérimentation et modélisation

Prof. Patrick Perré et Brahim Mazian Chaire de Biotechnologie patrick.perre@centralesupelec.fr

2

Vos 15 prochaines minutes

- Produits biosourcés = forte hygroscopicité
- Formulation/modélisation
- 3 exemples d'application en analyse thermique
- Conclusion

The physics of coupled transfers

MACROSCOPIC SCALE

Characterisation of biosourced products

Thermal characterisation

Characterisation of moisture migration

The comprehensive macroscopic formulation

Moisture conservation

$$\rho_0 \frac{\partial X}{\partial t} + \nabla \cdot (\rho_w \bar{\boldsymbol{v}}_w + \rho_v \bar{\boldsymbol{v}}_g) = \nabla \cdot (\rho_g \boldsymbol{f} \boldsymbol{D}_v \nabla \omega_v + \rho_s \boldsymbol{D}_b \nabla X_b)$$

Energy conservation

$$\begin{aligned} \frac{\partial}{\partial t} \left(\varepsilon_w \rho_w h_w + \varepsilon_g (\rho_v h_v + \rho_a h_a) + \overline{\rho}_b \overline{h}_b + \varepsilon_s \rho_s h_s \right) \\ &+ \nabla \cdot \left(\rho_w h_w \overline{v}_w + (\rho_v h_v + \rho_a h_a) \overline{v}_g \right) \\ &= \nabla \cdot \left(\lambda_{eff} \nabla T + \rho_g f D_v (h_v \nabla \omega_v + h_a \nabla \omega_a) + h_b D_{b,\rho_v} \nabla \rho_v \right) \end{aligned}$$

Air conservation

$$\frac{\partial \left(\varepsilon_{g} \rho_{a}\right)}{\partial t} + \nabla \cdot \left(\rho_{a} \bar{\boldsymbol{v}}_{g}\right) = \nabla \cdot \left(\rho_{g} \boldsymbol{f} \boldsymbol{D}_{v} \nabla \omega_{a}\right)$$

Perré, Turner (1999) Int. J. Heat Mass Transfer 42, 4501-4521.

The physics behind the macroscopic formulation

Moisture conservation

High temperature configurations

Perré et al., 2023 - State-of-the-art in the mechanistic modeling of the drying of solids: a review of 40 years of progress and perspectives, Drying Technology

The physics behind the macroscopic formulation

Thermo-migration

- Surface tension 💊 with temperature
- Pvs 🖊 with temperature
- Thermo-activation

Perré et al., 2023 - State-of-the-art in the mechanistic modeling of the drying of solids: a review of 40 years of progress and perspectives, Drying Technology

Heat capacity measurement in the case of hygroscopic materials

Calvet Calorimeter C80

Batch cell

High Pressure cell

Wood sample

Simple simulation

- Sample mass and initial moisture content
- Crucible volume
- GAB sorption isotherm : $X_{eq} = f(RH, T)$
- Saturated water vapor pressure = f(T)
- Steady-state regime

22.502

Simulation results

Simulation results

Recommendations

- Coupling negligible at low temperature (ca. 50°C)
- Mass to be increased to reduce the coupling (limitation of the heating rate)
- Coupling increase with moisture content (water activity)
- Good accuracy when sample oven-dry before the test.

Mass diffusivity measurement

Classical methods

A new method : inverse analysis of the RH on the backside of the sample

Principle

- The relative humidity varies on the exposed side and is simply measured on the back side (no need for perfect control)
- The mass diffusivity is determined by inverse method
- No moving pieces, several sample measured at the same time at low cost.

Requires a comprehensive physical model accounting for H&M coupling.

Perré, Pierre, Casalihno, Ayouz, Drying Technology, 2015

Back-face method : *mesure de la diffusivité à la vapeur d'eau*

Perré P., Pierre F., Casalinho J., Ayouz M., Drying Technology, 2015

Some results

		f
MDF		0.285
Fiberboard		>>1
Spruce	Radial direction	0.024
	Tangential direction	0.017

Simulation results

Profiles along half-thickness

Perré, Challansonnex, Colin (2019) Int. J. Heat Mass Transfer 133, 968-975.

An specific experiment to obtain a symmetrical configuration

Sudden change to 40% RH after equilibrium at 20% RH

Perré, P., Challansonnex, A., Colin, J. (2019), Int. J. Heat Mass Transfer 133, 968-975.

Patrick Perré et Brahim Mazian, JCAT53

Experimental results

Impressive temperature peak in value (4°C) and duration (10 hours)

Perré, Challansonnex, Colin (2019) Int. J. Heat Mass Transfer 133, 968-975.

Changing thermal properties in the model

Perré, Challansonnex, Colin (2019) Int. J. Heat Mass Transfer 133, 968-975.

Failure of local equilibrium : multiscale effects

Three intricate spatial scales

Macroscopic formulation : memory function Local behaviour following a sudden change in RH

Macroscopic formulation : memory function

The modified heat & mass transfer model

One internal variable per exponential function

P. Perré (2019), Int. J. Heat Mass Transfer, 140: 717-730

Validation : temperature

2

Thank you for your attention !

him Mazian, JCAT53