Calorimetric approaches to investigate soil organic matter decomposition

Tobias Bölscher *INRAE, UMR EcoSys tobias.bolscher@inrae.fr* Why do we care about soil organic matter decomposition?

Climate change

Soils as sink or source of carbon?

Soil fertility

Availability of organic nutrients

- Water retention in soil
- Stability of soils again erosion
- ... many more!

Why using calorimetry to investigate SOM decomposition?

The microbial engine

Organic Matter

Fuel for the Soil Engine

Microorganisms

Biological Engine of the Earth

Energetic demands drive decomposition
 Calorimetric techniques

Calorimetric approaches

Organic Matter

Fuel for the Soil Engine

Microorganisms

Biological Engine of the Earth

- Bomb calorimetry
- Differential scanning calorimetry (coupled to thermogravimetry)

- Isothermal microcalorimetry
- Calorespirometry

Microbial activity during organic matter decomposition

Isothermal calorimetry

OIKOS 34: 98-102. Copenhagen 1980

Microcalorimetric and gas chromatographic studies of microbial activity in water leached, acid leached and restored soils

Karin Ljungholm, Börje Norén and Göran Odham

Soil Biol. Biochem. Vol. 13, pp. 373 to 376, 1981 Printed in Great Britain 0038-0717/81/050373-04502.00/0 Pergamon Press Ltd

HEAT OUTPUT OF THE SOIL BIOMASS

G. P. Sparling

Department of Microbiology, Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, Scotland

Isothermal calorimetry

Umeå

Stockholm

Bölscher et al. (2016) Biol. Fertil. Soils 52

Microbial activity

Umeå

Stockholm

Boischer et al. (2016) Biol. Fertil. Soils 52

Microbial metabolic efficiency

<u>Common approach addresses C</u>

Carbon-Use Efficiency (CUE):

 $CUE = \frac{Biomass - C}{Biomass - C + \sum CO_2 - C}$

Biomass: substrate incorporation into microbial biomass $\sum CO_2$ -C: cumulative respiration from substrate

Microbial metabolic efficiency

Microbial metabolic-use efficiency

Residual substrate assays

Bölscher et al. (2020) Soil Biol. Biochem. 140 Bölscher et al. (2017) Soil Biol. Biochem. 109 Bölscher et al. (2016) Fert. Biol. Soils 52

Thermodynamic Efficiency

 $= 1 - \frac{Heat_{released}}{Energy_{added} - Energy_{residual}}$

Determined after 15% added substrate was used → <u>Same workload</u> for microorganisms

I. Microbial metabolic efficiency

40 20 10 -10 -30 -40

-20

-40

Umeå

Stockholm

Bölscher et al. (2020) Soil Biol. Biochem. 140

Isothermal calorimetry

Advantages

- Non-destructive; continuous real-time data
- High sensitivity and accuracy
- Aerobic and anaerobic metabolism: e.g. sulfate reduction, denitrification, fermentation
 provides additional
 - information to CO2 evolution
- Multi-channel instruments (8-42 channels)
- Simplicity and passivity

Challenges

- Not process specific
- Relative small sample volume
- Still relative low sample throughput
- Equilibration time (ca. 1 h at 20 °C, ca. 24 h at 5 °C)
 → can be circumvented by using the titration system

Calorespirometry

Provides information about:

- Microbial growth yield (i.e. carbon use efficiency)
- Degree of reduction of C in substrate
- Incomplete oxidation of substrate
- Microbial physiology
 - → aerobic vs. anaerobic respiration

Calorespirometric ratios:

 $\frac{R_q}{R_{CO_2}} = \frac{Q}{CO_2}$

→ 0-600 kJ mol⁻¹ CO₂

 \rightarrow ~455 kJ mol⁻¹ O₂ (less commonly used)

Hansen et al. (2004) Themochim. Acta 422; Wadsö & Hansen (2015) Methods 76; Herrmann & Bölscher (2015) Soil Biol. Biochem. 83

Energy content of organic matter

Bomb calorimetry

Enthalpy of combustion → energy content

Challenges:

- Soil are mixtures of mineral phases and organic matter
- Confounding by thermal effects of:
 - hygroscopic water
 - Calcium carbonate formation...
- Discrepancies with results from DSC-TGA!!

^a Currie (2003) *Glob. Change Biol.* 9
^b Bölscher et al. (2017) *Soil Biol. Biochem.* 109
^c Dufour et al. (2022) *Soil Biol. Biochem.* 173

DIFFERENTIAL SCANNING CALORIMETRY

Thermal stability and energetic properties of organic matter

Differential scanning calorimetry

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

Combustion of OM during constant temperature increase under oxygen atmosphere

Thermal stability as a proxy of resistance against decomposition

Enthalpy of combustion (combined integrals of DSC and DTG)

Activation energy of thermal oxidation (Arrhenius equation)

Potential to estimate Degree of reduction, Gibbs energy when applying estimated oxycaloric quotient

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

Differential scanning calorimetry

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

Challenges:

- Soil are mixtures of mineral phases and organic matter
- Confounding by thermal effects of:
 - hygroscopic water
 - Calcium carbonate formation
 - ≻ ...
- Discrepancies with results from DSC-TGA!!
- Easier application on pure organic matter (e.g. organic soil amendments)
 - Compost
 - Digestates
 - ⋟.

Thermal stability of organic matter

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

Thermal indices:

- DSC-T₅₀: Temperature at which 50% of the energy release has occurred
- TG-T₅₀: Temperature at which 50% of the weight loss has occurred

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

Harvey et al. (2016) *Env. Sci. Tech. 50* Rovira et al. (2008) *Soil Biol. Biochem.* 40 Willems et al. (2013) *Polym. Degrad. Stab.* 98

Linking the Energetic Return-On-Investment to microbial decomposition of organic soil amendments

Do the energetic properties of organic amendments differ?

Do the energetic properties drive the decomposition of amendments in soil?

Can the energetic return-on-investment be used to predict the long-term stability of organic amendments in soil?

DOC extraction Cross incubation

Microbial activity over 24 h at 25 °C

Dufour et al. (2022) Soil Biol. Biochem. 173