

CHARACTERIZATION OF OPAQUE AND CONCENTRATED EMULSIONS: A CHALLENGE FOR LIQUID/LIQUID SEPARATION

CARACTÉRISATION DES ÉMULSIONS OPAQUES ET CONCENTRÉES: UN CHALLENGE POUR LA SÉPARATION LIQUIDE/LIQUIDE

CHRISTINE DALMAZZONE – IFPEN

JCAT53, PALAISEAU – 22-24 MAI 2023

CONTEXT

• Liquid/Liquid separation processes

- Oil dehydration
- Deoiling of waste waters
- Breaking of « chocolate mousse » after an oil spill

•

LIQUID/LIQUID SEPARATION: EMULSION ISSUES

DURING PRODUCTION, EMULSIONS ARE FORMED:

Through perforations (comingled oil/water/gas)

Through choke valves

By turbulence (multiphase lines)

Everywhere when a sufficient amount of energy is transferred to the system

Study of droplet breakup through a calibrated orifice

With some chemicals (surfactants, emulsifying agents) or solid particles (sand, silt, clay....)

OIL DEHYDRATION: CLASSICAL TREATMENTS

WATER DEOILING: CLASSICAL TREATMENTS

Source: Alfa Laval

OIL PARTICLE DIAMETER (µm)

5 © | 2021 IFPEN

Source: Wikipedia

GENERATION OF REPRESENTATIVE EMULSIONS

IFPEN DISPERSION RIG WITH INSTRUMENTED SEPARATOR

Janssen, Noïk and Dalmazzone (2001), SPE n°71473

CHARACTERIZATION OF EMULSIONS - STABILITY

CLASSICAL BOTTLE TESTS IN THE LAB

Source: Formulaction

Monitoring of the evolution of phase separation by using transmitted and backscattered light (Turbiscan[™])

Dalmazzone and Noïk (2001), Development of New "green" Demulsifiers for Oil Production, SPE n°65041

CHARACTERIZATION OF EMULSIONS - STABILITY

Noïk, Palermo and Dalmazzone (2013), *Journal* of Dispersion Science and Technology **34**, 1029.

120

CHARACTERIZATION OF EMULSIONS – STABILITY - DSC

Differential Scanning Calorimetry (DSC) may be advantageously used to characterize complex water-in-oil (w/o) emulsions.

Peaks of crystallization: the lower the temperature of ice crystallization, the smaller the droplets Peaks of melting: the peak area gives the water content

Dalmazzone, Noïk and Clausse (2009), Application of DSC for Emulsified System Characterization, *Oil & Gas Science and Technology* **64**(5), 543.

CHARACTERIZATION OF EMULSIONS – STABILITY - DSC

In the case of brine-in-oil emulsions:

the temperature of end of ice melting gives the composition of the aqueous phase for a binary mixture water+solute (salt for example)

for salts like NaCl, the binary phase diagram may be used to determine the composition from DSC thermograms

CHARACTERIZATION OF EMULSIONS – STABILITY - DSC


```
EM: Emulsion pH7,
5 g/L NaCl
EM1: Emulsion pH11,
10 g/L Na<sub>2</sub>CO<sub>3</sub>
EM2: Emulsion pH11,
10 g/L Na<sub>2</sub>CO<sub>3</sub>,
0.1% SDBS (sodium dodecylbenzene sulfonate)
```

Comparison of Water-in-Heavy Oil Emulsions

Dalmazzone *et al.* (2012), *Energy & Fuels* **26**, 3462.

CHARACTERIZATION OF EMULSIONS – DROPLETS SIZE

Encapsulation of the droplets in order to avoid coalescence

- Interfacial polymerization
- hydrophilic reagent: triethylene tetramine
- hydrophobic reagent: terephthaloyl dichloride

Optical Microscopy

+

Image Analysis

Noïk et al. (2004), Oil & Gas Science and Technology **59**(5), 535.

CHARACTERIZATION OF EMULSIONS – DROPLETS SIZE

CRYO-SEM: SEM fitted with a cold stage unit

Freezing of emulsion in a nitrogen slush at -200°C Transfer in a cryo lock chamber at -170°C Fracturation and metallization with Cr Transfer to the microscope chamber at -180°C

Water-in-Crude Oil Emulsions

Determination of droplet size distribution in the emulsion Image analysis software

Al Ghamdi *et al.* (2009), *SPE Journal* **14**(4), 595.

CHARACTERIZATION OF EMULSIONS – DROPLETS SIZE

Dynamic Light Scattering (DLS): powerful technique to characterize diluted and transparent dispersions of particles from the **nanometer up to a few microns** through the analysis of scattered light fluctuations caused by the Brownian motion of particles.

To overcome the DLS limitations, IFPEN has developed an original optical design of the sample cell. The bottom of the measuring cell is formed by the upper surface of a glass prism guiding the laser beam while a mobile glass rod allows an accurate control of the sample thickness (down to a few tens of microns thickness).

Vasco DLS instrument (Cordouan Technologies)

Yudin et al. (1998), *Journal of Petroleum Science and Engineering* **20**, 297.

CHARACTERIZATION OF EMULSIONS – ELECTRICAL STABILITY

Electrical Stability Tester EST

Method and electrical apparatus used for oil-based drilling mud stability control (API 13B-2) Simple electrode, AC Voltage @ 340 Hz Progressive increase of voltage @ 150 V/s up to 12.9 kV/cm Critical Electrical Voltage measured at 61 µA (shortcircuiting) Method: Tests on reconstituted emulsions After EST test, monitoring of the volume of separated free water after 24 hours

IFPEN Electrocoalescence set-up

Fluid injection into the annular between 2 concentric tubes as electrodes AC field: high voltage/high frequency 50Hz - 2 kHzFlow rate $0.1 - 1.2 m^3/h - T$ from ambient to $60^{\circ}C$

CHARACTERIZATION OF EMULSIONS – RHEOLOGY

Comparative plot of different viscosity models (relative viscosity versus dispersed volume fraction) – 30°C

Quintero, Noïk, Dalmazzone and Grossiord (2008), *Rheol Acta* **47**, 417.

Penergies nouvelles CHARACTERIZATION OF EMULSIONS – INTERFACIAL RHEOLOGY

Tracker (TECLIS) for interfacial rheology

Evolution of E', E'' and ϕ with time (crude C, 0.1 Hz, 30°C)

17 © | 2021 IFPEN

• The step of characterization is essential at the lab and semi-industrial scale

- To develop flexible and efficient technologies
- To develop specific additives (emulsion breakers, flocculant, clarifiers...)

Combination of several methods to characterize opaque and concentrated emulsions

- Stability
- Droplets size
- Rheological behavior

Acknowledgments: C. Noïk, A. Mouret, L. Podesta-Foley, P. Thoral, C. Burnichon, D. Frot, I. Hénaut

Innover les énergies

Retrouvez-nous sur :

www.ifpenergiesnouvelles.fr

@IFPENinnovation

