

Corn cobs' biochar as a host support of salt hydrates for heat storage applications

ZBAIR Mohamed

NGUYEN Minh Hoang

DUTOURNIE Patrick

LIMOUSY Lionel

BENNICI Simona

Context Materials Synthesis Characterization Discussion Conclusion

Materials Synthesis Characterization Discussion

Salt hydrates : high theory heat storage density and non-toxic

Na2S. 9H2O

GdCl₃. 6H₂O

MgSO4. 7H2O

J₂(SO₄)₃. 18H₂O

EuCl3. 6H2O

Low Charging temperature (150 °C)

Suitable for domestic applications

3 Energy density (GJ/m³) 2.3 H_2O SrBr2 6H2O 5H20 aCl₃. 7H₂O gCl₂. 6H₂C C2CO3. 1.5 H2 CuCl₂. 2H₂O

MgSO₄ = best candidate Low-cost (3.8 €/kg) Non-corrosive nor toxic High DRH : 90 % at 30 °C High theory ESD : 2.8 GJ/m³ Low charging temperature

Dispersion of MgSO₄ onto a porous support

Synthesis Characterization Discussion Conclusion

Composites MgSO₄/biochar CC

- Pore size
- High surface area and High thermal conductivity
 Impregnation M

Composite xMgCC x : wt.% of MgSO₄

- Valorization of agriculture co-product
- Answer to circular economy issues

- <u>X-Ray Fluorescence</u> : determine the chemical composition of the sample
- <u>X-Ray Diffraction</u> : analysis of the present crystalline phases
- <u>SEM coupling with EDX</u> : analysis sample morphology and perform elemental composition mapping
- <u>CO₂ isotherm adsorption</u> : analysis of the porosity, pore size distribution and surface area
- <u>Hg intrusion porosimetry</u> : analysis of the macroporosity
- Water adsorption experiments

A Sensys TG-DSC apparatus, equipped with a

Wetsys flow humidity generator

Context Materials Synthesis Characterization Discussion Conclusion IS2M

Hg intrusion analysis of CC Total porosity = 70.4 % $V_p = 1.89 \text{ cm}^3/\text{g}$

 $S_{BET} = 175 \text{ m}^2/\text{g}$

text Materials Synthesis Characterization Discussion

Sample	Heat released (J/g _{comp})	Water adsorption (g/g)
CC	183	0.070
5MgCC	360	0.126
10MgCC	426	0.157
15MgCC	574	0.207
20MgCC	635	0.235

The heat released increases with the salt content

Discussion

Composites MgSO₄/biochar CC – Heat released

Sample	Heat released (J/g _{comp})	Heat released (J/g _{H20})
CC	183	2607
5MgCC	360	2854
10MgCC	426	2940
15MgCC	574	3031
20MgCC	635	3100

Case of biochar CC

Heat released of the support biochar : $Q_{sup} = 2607 \text{ J/g}_{H20}$

Latent heat of water at 30 °C : $L_v = 2406 \text{ J/g}_{\text{H2O}}$

Context Materials Synthesis Characterization Discussion

Composites MgSO₄/biochar CC – Water adsorption

The hydration behavior is similar for all composites

Discussion

Composites MgSO₄/biochar CC – Kinetic

Intra-particle diffusion model (Weber-Morris)

$$q_t = k_i * t^{0.5} + C$$

with k_i intra-particle diffusion rate constant (g.g⁻¹.h^{-0.5}) *C* represents the material transfer resistance (g/g)

 $0.09 \le k_i \le 0.11$

IS2M

Composites MgSO₄/biochar CC-cyclability

Composite 20MgCC after 6 cycles dehydration/hydration

SEM/EDX after 6 cycles

- Corn-cobs biochar is a promising host for salt hydrates for TES materials.
- Calorimetry coupled with TG is fundamental for the study of heat storage materials.
- Salt composites have a good stability over multiple hydration/dehydration cycles.

