

JCAT53– 53èmes Journées de Calorimétrie et d'Analyse Thermique Palaiseau, France, 23-24 May 2023

Differential scanning calorimetry applied to the preservation of bacteria and mammalian cells

Fernanda Fonseca, Stéphanie Passot

UMR782 Paris-Saclay Food and Bioproduct Engineering, INRAE, AgroParisTech, Palaiseau, France

Preservation of bacteria and mammalian cells

Global Probiotic Market. Markets and Markets, 2020, 1-169.

Freezing & Freeze-drying

Preservation of **complex biological systems**

✓ Short, robust FD cycle
✓ Elegant, mechanically strong cake
✓ Rapid reconstitution
✓ Stability through the shelf life

Mammalian cells are preserved only by freezing Freezing \rightarrow The first and shortest step of the FD process

BUT important impact on the desired quality attributes of freeze-dried product

Stressful environment during freezing and freeze-drying

Cell production and functionalities' recovery

Freezing

Ice crystals formation in the extracellular medium

Fonseca. et al. 2006, AEM

The cell adventure during freezing

 \rightarrow Vitrification of extracellular medium at Tg'e <<Tg'i

Membrane lipid phase transition, Ts = 10°C

The cell adventure during freezing

\rightarrow Similar approach applied to mammalian cells: cryoprotectant 0.58 M Me₂SO

The cell adventure during freeze-drying: the state diagram

Characterisation of physical events

Lipid organisation, ice formation/structure, glass transition

FTIR spectrosocopy With controlled variable T° device

Lipid phase transition temperature Lipid organization

Differential Scanning Calorimetry

Intracellular ice formation, recrystallization Glass transition temperature of - Cellular content - Cryprotective medium

Cells in cryopreservation media

Cryomicroscopy SEM

Ice structure Recrystallization

DSC = powerful tool

Physical properties: the state diagram of bacterial concentrates

Fonseca et la. 2001, Thermochimica Acta

Bacterial concentrates exhibit a glass transition event, which is determined by the external medium and the water content (no visible effect of bacterial constituents)

Glass transition of the extracellular medium (Tg'e) and stability of frozen LAB

→ If Ts < Tg₂' - 20°C, k low (< 1 min.j⁻¹) => \odot glassy « stable » solid

→ If Ts > Tg₂' - 20°C, k increases depending on the protective medium
③ increase of molecular mobility, viscoleastic « unstable » material

Fonseca 2001, PhD thesis

Glass transition (Tg) and stability of dehydrated LAB

and eco-friendly processe

S. thermophilus

L. salivarius CECT57131

Selma et al., 2007, J Sci Food Agric

The maintenance in a glassy state is a necessary condition for the stability of dehydrated LAB

But ...

Cooling rate and cell freezing resistance

Intracellular ice formation Yeast

Mechanical stress

Fonseca et al. 2016, PlosOne

$\mathsf{Or} \rightarrow \mathsf{Devitrification} \, / \, \mathsf{plasmolysis}$

Lb bulgaricus

Fonseca et al. 2006, AEM

Sperm cell

Morris & Acton 1999, Human Rep

Avoid intracellular ice formation and control cell dehydration \Rightarrow Control the cooling rate, apply optimal cooling conditions

But, survival is measured after **storage** at a given T° and following **thawing**....

Intracellular ice formation: DSC and cryomicroscopy

At 50 °C.min⁻¹ intracellular ice is observed in the DSC trace (exothermic event during cooling)

Ice recrystallization (devitrification): DSC + SEM & TEM

DSC:

LN2 cooling => decrease of: Tg', amount of ice and [glycerol]; Annealing -20°C => shift of Tg' to higher values => ice recrystallization

SEM: Ice recrystallization during storage at -20°c

TEM: Ice recrystallization => dehydration/plasmolysis

Fonseca et al. 2006, AEM; Morris et al 2007, Theriogenology; Baboo et al 2019, Sci. Rep.

Intracellular glass transition (Tg'i) determined by DSC

Cold stress (low T°): From ambient to -80°C or lower
Ice nucleation, crystal growth, solute concentration
Viscosity increase inside and outside the cell

 → Vitrification of intracellular content at -10 to -26°C (Tg'i) without cryoprotectant

→ Vitrification of extracellular medium at Tg'e <<Tg'i

DSC cell pellets

Part of GE Healthcare Life Sciences

Bacteria, yeast, algae

Intracellular glass transition and stability of frozen LAB

Lb bulgaricus CFL1 Cultured in whey medium

Intracellular glass transition and critical end point T^o

 \rightarrow The critical controlled-cooling endpoint T° in Jurkat cells \blacksquare day 1

day 1 🗖 day 2 🗖 day 3

Transferring cells to LN₂ at:

- $T \ge -40^{\circ}C \rightarrow$ loss of viability & functionality post-thaw
- T = -50°C \rightarrow optimum viability and functionality post-thaw
- T < -50°C → no further improvement of cell viability and functionality post-thaw

Same observations for HepG2, MG63 and CHO cells

Implications of Intracellular glass transition for astrophysics

Physical properties & modelling – new tools

Tréléa et al. 2007, Drying Technology

* * * * *

2007-2013

Passot et al 2012, Food Chem.

Tg and aw: key parameters for optimal preservation of freeze-dried LAB

Fig. 1. Relationships between glass transition temperature (T_g) , water activity (a_w) and water content (m) for bacterial suspension freeze-dried in a sucrose matrix. Lines indicate the location of critical T_g , a_w and m values at 25 °C.

sponding to the a_w values.

European project CAFE Computer-aided Food processes for control Engineering Freeze-drying process 2007- 2013 - Fermentation - Freezing - Sublimation - Desorption - Storage -

Effect on the acidifying activity of operating conditions during sublimation

Passot et al. 2011, ICEF

Passot et al. 2011, ICEF

Thank you for your attention!

G. John Morris Cryobiology Cryomicroscopy

