

Paul Greuet, Anir Benihya, Gaël Huet, Zineb Benbrahim, Salomez Mélanie, Sandra Domenek, Emmanuelle Gastaldi

emmanuelle.gastaldi@umontpellier.fr

UMR IATE - Agro-Polymers Engineering and Emerging Technology Université de Montpellier – INRA – Montpellier - France

Context

A tremendous demand for plastics

Plastic wastes accumulation => environmental damage

Terrestrial

Mechanisms involved in biodegradation

MACROSCOPIC

MICROSCOPIC

MACROMOLECULAR

MOLECULAR

Understanding of the main **physical-chemical properties** that affect their biodegradation rate to Identify **key limiting factors** driving biodegradation

by combining different methodological approaches

Choice of polymers

PHBV

Polyhydroxybutyrate-co-valerate

PHI 002 (NaturePlast) 1-3% mol HV Xc = 54 % (DSC) Mn ≈ 94 000 g/mol

PBSA

Polybutylene succinate-co-adipate

PBE 001 (NaturePlast) 21% mol BA Xc = 47% (DSC) Mn ≈ 44 000 g/mol

PLA

Polylactic acid

Natureworks Amorphous d = Ø Mn ≈ 75 311 g/mol Total Corbion Semi-crystalline d = 31.13 % (DSC) Mn ≈ 82 960 g/mol

Lyspackaging Semi-crystalline d = 25.52 % (DSC) Mn ≈ 103 760 g/moli

PHBV PBSA

Biodegradation process in composting conditions

sampling during the biodegradation processs

Physical-Chemical Analysis

Mass loss (weighting)
Mineralisation (respirometry)
Surface erosion (SEM)
Surface hydrolysis (FTIR)
Molar Mass (SEC)
Tg, Xc (DSC)

Mass loss vs CO₂ release

PHBV

Biodegradation in industrial composting conditions (58°C)

Surface erosion

Surface hydrolysis

Carbonyl Index => indicator of the extent of the ester linkage hydrolysis

Surface hydrolysis

PBSA

FTIR

Hydrolysis <u>concomitant</u> with erosion \Rightarrow no change in the carbonyl index

✓ Related with a high rate of mass loss and mineralisation

Surface hydrolysis

FTIR

PHBV

PBSA

- ✓ Hydrolysis <u>without</u> erosion/etching => decrease of the carbonyl index
- ✓ Related with a low rate of mass loss and mineralisation

Bulk Hydrolysis

✓ Hydrolytic chain scission PBSA > PHBV
✓ Related to water permeability and diffusion => abiotic mechanism

Bulk structural changes

✓ Hyp 1 : ≠ accessibility of the crystalline phase for micro-organisms enzymes
PHBV >> PBSA due to ≠ morphologies and specific surface

✓ Hyp 2 : recrystallisation phenomenon due to water hydrolysis of PBSA chains

Bulk structural changes

✓ new crystal populations with different morphologies and dimensions
✓ reduction in molecular weight of PHBV polymer chains.

Bulk structural changes

Methodological approach

PLA

Pellets

amorphous semi-crystalline (Xc = 31%)

Packaging material semi-crystalline Xc= 25%)

Thermo-chemical treatments

Pellets Pieces of bottle 24 à 48h

Water / KOH 2%, 20%

70-90-100°C

Physical-Chemical Analysis

- ➤ Solubilisation rate (weighting)
- > [lactic acid] (HPLC)
- Thermal stability (TGA)
- ≻Tg, Xc (DSC)

Compost

CO-

Biodegradation (respirometry)

Impact of thermo-chemical treatment on PLA solubilisation

Semi-crystalline pellet Semi-crystalline bottle Amorphous pellet

- ✓ Solubilisation rate of PLA is related to polymer crystallinity
- Solubilisation rate of PLA increases with the duration of the treatment

Relation between solubilisation and hydrolysis

✓ Good correlation between solubilisation and hydrolysis
whatever the degree of crystallinity and type of treatment

Impact of hydrolysis on thermal stability

✓ Solubilisation rate <=> thermal stability

✓ Solubilisation rate <=> ✓ Hydrolysis rate <=> ↘Tg
✓ Chain mobility with decrease in Mw

Impact of hydrolysis on thermal properties

Semi-crystalline bottle

DSC

Impact of hydrolysis on crystallinity

1 Xc

✓ ✓ Hydrolysis rate => => ✓ crystallinity rate

Impact of hydrolysis on biodegradability

 ✓ Biodegradation in mesophilic compositing conditions improved but not achieved for semicrystalline PLA after thermal water treatment

Impact of hydrolysis on crystallinity

Home composting conditions (28°C)

KOH 2% treatment @ 70°C

✓ Biodegradation in mesophilic composting conditions achieved for both amorphous and semicrystalline PLA after thermal KOH treatment Among the different methodological approaches used to monitor the degradation status of polymer during the biodegradation process

The changes in thermal properties and notably the decrease in Tg and the increase in Xc appear as relevant indicators of molar mass decrease

Perspectives

- Study the end-of-life performance of biodegradable plastics and packaging through the existing organic valorization routes
- Improve the biodegradability of PLA and PBAT in mesophilic conditions
- Provide data demonstrating the non-persistence of residual compostable micro-fragments

SayFoöä

Many thanks for attention

Paul Greuet, Anir Benihya, Gaël Huet, Zineb Benbrahim, Salomez Mélanie, Sandra Domenek, Emmanuelle Gastaldi

emmanuelle.gastaldi@umontpellier.fr

UMR IATE - Agro-Polymers Engineering and Emerging Technology Université de Montpellier – INRA – Montpellier - France