Relations structure-mobilité-propriétés dans les matériaux polymères

Aurélien Roggero

Éric Dantras, Nicolas Caussé, Nadine Pébère,

Thierry Paulmier,

Carolina Franzon, Jean-François Gérard **INSA**

INP Ensiacet

CNIS

Doctorat (CIRIMAT/ONERA/CNES/Airbus DS)	2012-2015	Silicones Prop. électriques Vieillissement Formulation
Analyse du vieillissement d'un adhésif silicone en environnement spatial : influence sur le comportement électrique.	Soutenue 11/2015	Courants thermo-stimulés
Post-doctorat (CIRIMAT-Université Toulouse III Influence de l'état de polarisation sur le comportement mécanique dans les copolymères du PVDF.) 2016-2017	Polymères piézoélectriques Transition de Curie DMA sur films minces DSC SDD
ATER/Post-doc (CIRIMAT-ENSIACET) Analyse de la mobilité moléculaire de revêtements polymères en immersion.	2017-2020	Réseaux 3D (époxy) Prop. barrière Plastification Mobilité moléculaire Dév. banc mesure SIE//SDD DSC
Maître de Conférences (IMP-INS Relations structure-propriétés dans les polymères, sous l'angle de la mobilité m	A Lyon) Depuis 2020 matériaux noléculaire.	Réseaux hétérogènes Liquides ioniques Mobilité moléculaire Lien avec la synthèse

Recherche doctorale – 2013-2015

Analyse du vieillissement d'un adhésif silicone en environnement spatial : influence sur le comportement électrique

Éric Dantras Équipe Physique des Polymères

Denis Payan

Thierry Paulmier

Département Physique, Instrumentation, Environnement, Espace

Claire Tonon

Satellite géostationnaire (Airbus Defence & Space)

Contexte et problématique Adhésif silicone en environnement spatial

Spectroscopie diélectrique dynamique Analyse des modes de relaxation dipolaire

Recherche doctorale

Techniques électriques thermostimulées Relaxation de potentiel – courants de dépolarisation

Corrélation des techniques électriques en température

 \rightarrow mode α et écoulement des charges électriques piégées

Accélération et quantification du vieillissement Simulation expérimentale de l'environnement spatial

Enceinte d'irradiation

Environnement spatial

· Doses expérimentales

150

Années GEO

10[°]

10⁸

10

10[°]

1.4 10⁶ Gy

10⁵ 2.1 10⁵ Gy

0

Dose ionisante (Gy)

Enceinte d'irradiation électronique à l'Onera

Simulation du vieillissement subi entre 1 et 5 ans en service.

75

Profondeur (µm)

100

50

Évolution du module mécanique

Indicateur d'un processus de sur-réticulation du réseau silicone

Marqueurs de la mobilité moléculaire T_α et mode α diélectrique

Transition vitreuse Analyse calorimétrique diatherme Nominal Flux de chaleur (W/g) Filtré 0.1 W/g () () Endo. ΔT_g (4 6 8 10 12 14 Dose (x10⁵ Gy) 0 2 Dose +20°C/min -140 -120 -100 -80 -60 -40 Température (°C)

> □ $T_g \land \Rightarrow$ phénomène de réticulation □ $\Delta C_p \lor$ et s'étale \Rightarrow rigidification et hétérogénéisation des chaînes

- □ Sur-réticulation $\Rightarrow \tau_{H-N}$ ∧ avec la dose
- Élargissement de la distribution du mode
- Paramètres Vogel-Fulcher-Tammann

Processus de sur-réticulation

Recherche doctorale

Mise en évidence des liaisons formées et de l'influence des charges

Relations structure – propriété électrique Corrélation entre la sur-réticulation et l'augmentation de résistivité électrique

Recherche post-doctorale – 2016-2017

1/ Influence de la polarisation sur le comportement mécanique dans les copolymères du PVDF

Éric Dantras Équipe Physique des Polymères

Recherche post-doctorale – 2017-2020

21 Analyse de la mobilité moléculaire de revêtements polymères en immersion

Maestria

Nadine Pébère

Nicolas Caussé

Équipe Surfaces : Réactivité-Protection-Fonctionnalisation

Éric Dantras Équipe Physique des Polymères

Spectroscopie d'impédance électrochimique en température Analyse in situ de revêtements polymères en immersion

Objectif : stimuler la mobilité moléculaire d'un revêtement époxy en immersion

Banc de SIE en température

□ Gamme de températures : [T_{amb} ; 80] °C

□ Stabilité en température : ± 0.3 °C

Gamme de fréquences : [10⁻² ; 10⁶] Hz

Matériau (peintures Maestria)

- Vernis époxy / amine pour protection contre la corrosion de l'acier
- Application au pistolet (e ≈ 200 µm)
 T_g = 62 ± 1 °C

Traitement diélectrique des données Formalismes intensifs issus des études diélectriques

 10°

10¹

10⁻¹

10²

Fréquence (Hz)

10³

10⁴

10⁵

Utilisation des formalismes diélectriques pour mettre en évidence la mobilité moléculaire et le transport dc.

La permittivité comme marqueur de la prise en eau Analyse *in situ* de revêtements polymères en immersion

→ permittivité « sèche » $\varepsilon'_{t=0}$

- □ T ↗ : cinétique accélérée et plateau de saturation augmente
- Comportement analogue aux mesures gravimétriques
- \Box Évaluation de la fraction d'eau \rightarrow modèles (hypothèses fortes)

Étude de la cinétique de prise en eau Analyse *in situ* de revêtements polymères en immersion

Le passage de T_a se manifeste sur **l'étirement de la cinétique** (β_{KWW} devient constant) \rightarrow hétérogénéité des chemins de diffusion de l'eau due à la plastification progressive ($T < T_a$)

Polymer 213 (2021) 123206

Mobilité moléculaire plastifiée

Analyse des manifestations de la transition vitreuse

18

Corrélation avec la spectroscopie diélectrique Analyse *in situ* de l'influence de la plastification

Mobilité moléculaire dans des réseaux époxy hétérogènes modèles

Co-direction de la thèse de Carolina Franzon

Directeur de thèse : Jean-François Gérard

Réseaux époxy hétérogènes modèles Contrôle de l'hétérogénéité du degré de réticulation

Synthèse de microgels époxy réticulés (MEs) * Polymérisation par précipitation (époxy-amine)

Diamine

 $Moy. = 8,6 \, \mu m$ $\sigma = 1,0 \ \mu m$ 8 9 10 11 12 CEM diameter (µm)

> Inclusions de MEs dans une matrice de nature chimique voisine
> → réseau hétérogène modèle

Recherche actuelle

Matrice

32

D-400

D-2000

Matrice : analyse des modes de mobilité moléculaire Influence de l'humidité absorbée

Compréhension nécessaire de l'effet de l'humidité sur les relaxations pour l'analyse des réseaux hétérogènes (complexité ↗).

Yamamoto et al. Soft Matter 17 (2021)

Réseau hétérogène : DSC et DMA

Transitions vitreuses des deux phases

Manifestations des transitions vitreuses de la matrice et des microgels cohérentes avec les fractions massiques.

Réseau hétérogène Mobilité moléculaire du réseau hétérogène

□ Analyse de l'influence mutuelle des deux phases sur les modes de relaxation et la conductivité.
 □ Relaxation Maxwell-Wagner-Sillars (interface matrice / MEs) → marqueur de l'hétérogénéité ?

Merci pour votre attention

Palaiseau, 23 mai 2023

Remerciements

Palaiseau, 23 mai 2023

Aurélien Roggero

34 ans

Depuis 2020	Maître de Conférences – INSA de Lyon / IMP, Lyon		
2017-2020	ATER (2 ans) puis Post-doctorat (1 an) - INP ENSIACET / CIRIMAT, Toulouse		
2016-2017	Post-doctorat – Physique des Polymères CIRIMAT, Toulouse		
2012-2015	Doctorat Science des Matériaux – Université de Toulouse / ONERA / CNES / Airbus Defence and Space		
2006-2011	Diplôme d'ingénieur – INSA Toulouse, Génie Physique		

Production scientifique

Articles dans revues internationales avec comité de lecture : 16
Acte de congrès avec comité de lecture : 1
Communications en conférences internationales : 18 oraux (2 invités), 4 affiches
Communications en conférences nationales : 17 oraux, 1 affiche

Réseaux époxy hétérogènes modèles Microscopie électronique à balayage sur cryofracture

Pas de déchaussement des MEs ni de concentration de fissures aux interfaces → liaisons covalentes avec la matrice

Recherche post-doctorale

1/ Influence de la polarisation sur le comportement mécanique dans les copolymères du PVDF

Éric Dantras Équipe Physique des Polymères

Enthalpie cohésive de polarisation

Analyse calorimétrique diatherme

Échantillon polarisé : enduction en solution $\Rightarrow \chi_c$ supposé $\approx 40 \%$

enthalpie cohésive de polarisation

 $\Delta H_{pol} = \Delta H_{Curie}^{Polarisé} - \Delta H_{Curie}^{Dissous} \approx 14 \text{ J. } \text{g}^{-1} \approx \Delta H_{Curie}^{Dissous}$

Analyse mécanique dynamique Relaxations mécaniques

Transition de Curie

Manifestations mécanique et diélectrique

Rigidification de la phase amorphe par les champs électriques locaux de la phase cristalline ferroélectrique, à l'instar d'un verre dipolaire. Hypothèse cohérente avec calorimétrie et SDD.

Transition de Curie

Manifestations mécanique et diélectrique

Hypothèse

Phase amorphe rigidifiée par les champs électriques locaux de la phase cristalline ferroélectrique, à l'instar d'un verre dipolaire. Cohérente avec calorimétrie et SDD.

Recherche post-doctorale